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Computational Quantum Matter at UNC-CH

A non-perturbative look at qguantum matter

https://users.physics.unc.edu/~drut/public_htmIl_UNC/group.html
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Yaqi Hou — 3rd year

Matter whose collective behavior Is dominated
by the laws of quantum mechanics



Computational Quantum Matter at UNC-CH

https://users.physics.unc.edu/~drut/public_htmIl_UNC/group.html

Graduate Students

Andrew C. Loheac — 5th year | N
Chris R. Shill — 5th year Thermodynamics, phase transitions,

response to external perturbations,

Casey E. Berger — 4th year | |
quantum information, ...

Josh R. McKenney — 4th year

Yaqgi Hou — 3rd year /"

Matter collective behavior

/ quantum mechanics
&

Few to
many particles

A\

The many-body Schrddinger equation



Quarks and Gluons

Temperature T [MeV]
+— 3s1aA1UN Ape]

Color Super-
conductor?

Nuclei

Net Baryon Density




I'he challenge™

“Traditional” quantum mechanics

Wavefunction description for N particles requires exponentially
as much memory: you need to store a function of N variables

U(x1,X2,...,XN)

Discretize each variable into M points
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I'he challenge™

“Traditional” quantum mechanics

Wavetunction description for N particles requires exponentially
as much memory: you need to store a function of N variables

U(x1,X2,...,XN)

Discretize each variable into M points

Same problem as storing an N-dimensional array
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Advantage: knowing the wavefunction amounts to knowing
everything about the system of interest.
Disadvantage: 10 good to be true/practical
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“Modern” quantum mechanics, i.e. quantum field theory

We don'’t need to know everything. Focus on answering specific
questions, i.e. computing specific quantities: “observables”.
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“Modern” quantum mechanics, i.e. quantum field theory

We don't need to know everything. Focus on answering specitic
questions, i.e. computing specific quantities: “observables”.

E.g. a correlation function:

Sample with a
random number
generator that

obeys P [gb]

Calculate for
each sample

Sum over all possible ¢(X)

Advantage; Doable with weight P |¢)]

Disadvantage: Massive amounts of linear algebra and statistics involved.
An important class of systems requires exponentially
large statistics.



I'he challenge™

Random field generator P|¢]

Typically a very complicated function of the field that requires

a large number of linear algebra operations to be evaluated.
(It's the determinant of a large and complicated matrix computed on the fly)

Can we use ML ideas to speed this up?



I'he challenge™

Random field generator P|¢

Typically a very complicated function of the field that requires

a large number of linear algebra operations to be evaluated.
(It's the determinant of a large and complicated matrix computed on the fly)

Can we use ML ideas to speed this up?

Detecting phase transitions

Correlation functions G(x) can be expensive to compute,
difficult to analyze, and not always available.

Can neural networks detect phase transitions in the fields ¢
without computing specific observables?



Speeding up QMC using ML ideas: “Self-learning QMC”
Not using full-fledged deep learning, but inspired by it.
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Speeding up QMC using ML ideas: “Self-learning QMC”

Not using full-fledged deep learning, but inspired by it.
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Fast and exact...as long as
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Liu et al. Phys. Rev. B 95,041101(R) (2017)



Detecting phase transitions and critical phenomena:
“Machine learning phases of strongly correlated termions”

We can't tell the difference
just by looking at the field!

Can a neural network learn
to identify phases?

"Antiterromagnet”




Detecting phase transitions and critical phenomena:
“Machine learning phases of strongly correlated termions”

Network maximally confused at
phase transition temperature
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Use a 3D CNN!

K. Ch’ng, et al. Phys. Rev. X 7,031038 (2017)



Detecting phase transitions and critical phenomena:
“Machine learning phases of strongly correlated termions”

Network maximally confused at
phase transition temperature
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Our forays using CNNs — quieting the sign problem

The sign problem is a serious roadblock that prevents important
calculations in many areas of physics.

Imagine you would like to estimate an observable using a probability
measure P[¢], but varies in sign and is not well-defined.
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Determining an accurate estimate for(O) can be like finding a needle
N a quantum haystack.

Can we use convolutional neural networks to more cheaply
calculate observables when the sign problem worsens?



The limit of small densities (or number of particles) is one region where
the sign problem makes calculations difficult.

In our guantum Monte Carlo calculations, we are interested in
thermodynamic quantities such as the density equation of state.

The goal: CNNs can enable explorations of stronger interactions by
working together with quantum Monte Carlo algorithms.
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A. C. Loheac and J. E. Drut, Phys. Rev. D 95, 094502 (2017)



The goal: CNNs can enable explorations of stronger interactions by
working together with quantum Monte Carlo algorithms.

Use field configurations from the deep quantum regime
(where the signal-to-noise is better) as training data.
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Can a CNN rpegime
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make an i
data to train
accurate

a CNN?

prediction here?

A. C. Loheac and J. E. Drut, Phys. Rev. D 95, 094502 (2017)



Network architecture

- Network uses both convolutional and
dense layers.
- Implemented in Keras/TensorFlow.
- Inputs:
- normalized form of fermion matrix
- Interaction strength
- chemical potential
- value of the fermion determinant
- Output: classification of field
configuration:
- > 20% error in density
- between 10% and 20% error
- < 10% error

~14,500 parameters.
Trained with ~150k - 300k samples.
Design still being optimized.

'h Normalized

~ fermion

-Li matrix
v

2D convolution (3, 3) 16 filters
2D convolution (3, 3) 8 filters
2D convolution (5,5) 8 filters
2D convolution (6, 6) 4 filters
2D convolution (7,7) 4 filters
2D convolution (7,7) 4 filters
Fully connnected layer (32 neurons)
Fully connnected layer (32 neurons)
Fully connnected layer (32 neurons)
Fully connnected layer (16 neurons)

sy
=3
<
(@)
Q
=
=
=
o
Q
=
@)
o,
=y
<
(¢}
)
~~
W
[\
o=
@)
o
=
o
=
7]
A

Fully connnected layer (16 neurons)
Fully connnected layer (16 neurons)

Fully connnected layer (8 neurons)

[, 8,7]

Fully connnected layer (8 neurons) m




A=1 ' Shaded area shows the standard
(preliminary and a work-in-progress) | deviation o of densities for each

14 - bin of field configurations.

prediction training data

1.3

' The red areas show o for the
1.2 - original Monte Carlo data.

1.1

The yellow areas show o for
Al values subset of configurations whose

< 20% error

< 10% error ' ' e)
09 CNN error is < 20%.
HMC
Reference value

1

The blue areas: error < 10%.

Large 0 — severe sign problem.

Model accuracy

CNN improves limits drastically.




(preliminary and a work-in-progress) (preliminary and a work-in-progress)

1 .4 T T 2 T T
prediction training data prediction training data

1.8

1.3
1.6

1.2

1.4

1.2

All values All values
< 20% error . < 20% error
< 10% error < 10% error

CNN . CNN
HMC HMC
Reference value Reference value

0o 1 2 ' 1 0 1 2
Bu

O
(9]

o0
9

Model accuracy
Model accuracy
\O
S




A=2.5

(preliminary and a work-in-progress)

Entirely a prediction.

The neural network can make
small extrapolations to
higher interaction strengths

it has not seen before.

All values
< 20% error

Potentially very useful for our | | < 10% eror
studies under a severe | Reforence MC

sign problem!

Step one in a longer-term goal.

Model accuracy



Summary & conclusions

Understanding quantum matter is a challenging problem for
ohysics at all scales: from inside atomic nuclei to materials

and star interiors:

The computational challenge has a linear algebra side and a
statistics side;

Machine learning is helping both sides simultaneously: the
essential aspects of gquantum dynamics can be learned

with deep networks;

owever, networks work together with conventional methods
to yield more efticient approaches - they do not replace them.




Thank you!



