Deep learning quantum matter

Machine-learning approaches to the quantum many-body problem

Joaquín E. Drut & Andrew C. Loheac University of North Carolina at Chapel Hill

Outline

Why quantum matter?

What is the challenge?

How machine learning is helping

- Speeding up quantum Monte Carlo
- Detecting phase transitions and critical phenomena
- Our forays with CNNs

Summary and conclusions

Computational Quantum Matter at UNC-CH

A non-perturbative look at quantum matter

https://users.physics.unc.edu/~drut/public_html_UNC/group.html

Graduate Students

Andrew C. Loheac — 5th year Chris R. Shill — 5th year Casey E. Berger — 4th year Josh R. McKenney — 4th year Yaqi Hou — 3rd year

Matter whose collective behavior is dominated by the laws of quantum mechanics

Computational Quantum Matter at UNC-CH

A non-perturbative look at quantum matter

https://users.physics.unc.edu/~drut/public_html_UNC/group.html

Graduate Students

Andrew C. Loheac — 5th year Chris R. Shill — 5th year Casey E. Berger — 4th year Josh R. McKenney — 4th year Yaqi Hou — 3rd year

Thermodynamics, phase transitions, response to external perturbations, quantum information,...

Matter whose collective behavior is dominated by the laws of quantum mechanics

Few to many particles

The many-body Schrödinger equation

Quantum matter...

...is everywhere, but...

"Traditional" quantum mechanics

Wavefunction description for N particles requires exponentially as much memory: you need to store a function of N variables

$$\Psi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)$$

Discretize each variable into *M* points

"Traditional" quantum mechanics

Wavefunction description for N particles requires exponentially as much memory: you need to store a function of N variables

$$\Psi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)$$

Discretize each variable into M points

Same problem as storing an N-dimensional array

$$\Psi_{ijk...}$$
 $i=1,\ldots,M$ \Longrightarrow M^N elements $j=1,\ldots,M$

"Traditional" quantum mechanics

Wavefunction description for N particles requires exponentially as much memory: you need to store a function of N variables

$$\Psi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)$$

Discretize each variable into M points

Same problem as storing an N-dimensional array

$$\Psi_{ijk...}$$
 $i=1,\ldots,M$ \Longrightarrow M^N elements $j=1,\ldots,M$

Advantage: knowing the wavefunction amounts to knowing everything about the system of interest.

Disadvantage: to good to be true/practical

"Modern" quantum mechanics, i.e. quantum field theory

We don't need to know **everything**. Focus on answering specific questions, i.e. computing specific quantities: "observables".

"Modern" quantum mechanics, i.e. quantum field theory

We don't need to know **everything**. Focus on answering specific questions, i.e. computing specific quantities: "observables".

E.g. a correlation function:

Sample with a random number generator that obeys $\mathcal{P}[\phi]$

Calculate for each sample

Sum over all possible $\phi(\mathbf{x})$ with weight $\mathcal{P}[\phi]$

"Modern" quantum mechanics, i.e. quantum field theory

We don't need to know **everything**. Focus on answering specific questions, i.e. computing specific quantities: "observables".

E.g. a correlation function:

Sample with a random number generator that obeys $\mathcal{P}[\phi]$

Calculate for each sample

Sum over all possible $\phi(\mathbf{x})$ with weight $\mathcal{P}[\phi]$

Advantage: Doable

Disadvantage: Massive amounts of linear algebra and statistics involved.

An important class of systems requires exponentially large statistics.

Random field generator $\mathcal{P}[\phi]$

Typically a very complicated function of the field that requires a large number of linear algebra operations to be evaluated. (It's the determinant of a large and complicated matrix computed on the fly)

Can we use ML ideas to speed this up?

Random field generator $\mathcal{P}[\phi]$

Typically a very complicated function of the field that requires a large number of linear algebra operations to be evaluated. (It's the determinant of a large and complicated matrix computed on the fly)

Can we use ML ideas to speed this up?

Detecting phase transitions

Correlation functions $G(\mathbf{x})$ can be expensive to compute, difficult to analyze, and not always available.

Can neural networks detect phase transitions in the fields ϕ without computing specific observables?

Speeding up QMC using ML ideas: "Self-learning QMC"

Not using full-fledged deep learning, but inspired by it.

Fast and exact...as long as parametrization is robust

Speeding up QMC using ML ideas: "Self-learning QMC"

Not using full-fledged deep learning, but inspired by it.

Detecting phase transitions and critical phenomena:

"Machine learning phases of strongly correlated fermions"

 $\phi(\mathbf{x})$

"Normal"

We can't tell the difference just by looking at the field!

Can a neural network learn to identify phases?

"Antiferromagnet"

Detecting phase transitions and critical phenomena:

"Machine learning phases of strongly correlated fermions"

Use a 3D CNN!

K. Ch'ng, et al. Phys. Rev. X 7, 031038 (2017)

Network maximally confused at phase transition temperature

Detecting phase transitions and critical phenomena:

"Machine learning phases of strongly correlated fermions"

Use a 3D CNN!

K. Ch'ng, et al. Phys. Rev. X 7, 031038 (2017)

Network maximally confused at phase transition temperature

Phase diagram

Our forays using CNNs — quieting the sign problem

The **sign problem** is a serious roadblock that prevents important calculations in many areas of physics.

Imagine you would like to estimate an observable using a probability measure $\mathcal{P}[\phi]$, but varies in sign and is not well-defined.

$$\langle \mathcal{O} \rangle = \int \mathcal{D}\phi \, \mathcal{P}[\phi] \, \mathcal{O}[\phi]$$

Determining an accurate estimate for $\langle \mathcal{O} \rangle$ can be like finding a needle in a quantum haystack.

Can we use convolutional neural networks to more cheaply calculate observables when the sign problem worsens?

The limit of **small densities** (or number of particles) is one region where the sign problem makes calculations difficult.

In our quantum Monte Carlo calculations, we are interested in thermodynamic quantities such as the **density equation of state**.

The goal: CNNs can enable explorations of stronger interactions by working together with quantum Monte Carlo algorithms.

The goal: CNNs can enable explorations of stronger interactions by working together with quantum Monte Carlo algorithms.

Use field configurations from the deep quantum regime (where the signal-to-noise is better) as training data.

Virial region
Can a CNN
help QMC
make an
accurate
prediction here?

Deep quantum regime
Can we use this data to train a CNN?

Network architecture

- Network uses both convolutional and dense layers.
- Implemented in Keras/TensorFlow.
- Inputs:
 - normalized form of fermion matrix
 - interaction strength
 - chemical potential
 - value of the fermion determinant
- Output: classification of field configuration:
 - > 20% error in density
 - between 10% and 20% error
 - < 10% error

~14,500 parameters.
Trained with ~150k - 300k samples.

Design still being optimized.

Shaded area shows the <u>standard</u> deviation σ of densities for each bin of field configurations.

The **red** areas show σ for the <u>original</u> Monte Carlo data.

The **yellow** areas show σ for subset of configurations whose error is < 20%.

The **blue** areas: error < 10%.

Large σ — severe sign problem.

CNN improves limits drastically.

$$\lambda = 2$$

(preliminary and a work-in-progress)

Entirely a prediction.

The neural network can make small extrapolations to higher interaction strengths it has not seen before.

Potentially very useful for our studies under a severe sign problem!

Step one in a longer-term goal.

Summary & conclusions

Understanding quantum matter is a challenging problem for physics at all scales: **from inside atomic nuclei to materials and star interiors**;

The computational challenge has a **linear algebra** side and a **statistics** side;

Machine learning is helping both sides simultaneously: the essential aspects of quantum dynamics can be learned with deep networks;

However, networks work **together** with conventional methods to yield more efficient approaches - they do not replace them.

Thank you!